Applying Machine Learning Techniques in
Software Engineering

BITS ZG628T: Dissertation
by
Vijayshinva B. Karnure
2013HT13433

Dissertation work carried out at

HARMAN International (India) Pvt. Ltd. Bangalore

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE
PILANI (RAJASTHAN)

October 2015



Applying Machine Learning Techniques in
Software Engineering

BITS ZG628T: Dissertation

by

Vijayshinva B. Karnure
2013HT13433

Dissertation work carried out at

HARMAN International (India) Pvt. Ltd. Bangalore

Submitted in partial fulfillment of M.Tech. Software Systems

Under the Supervision of
Raghuraman Rajagopalan, Director — Technology

HARMAN International (India) Pvt. Ltd. Bangalore

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE
PILANI (RAJASTHAN)
October, 2015



CERTIFICATE

This is to certify that the Dissertation entitled Applying Machine Learning
Techniques in Software Engineering and submitted by Vijayshinva B. Karnure
having ID-No. 2013HT13433 for the partial fulfillment of the requirements of

M.Tech. Software Systems degree of BITS, embodies the bonafide work done by him

under my supervision.

| S ,. e e A
/

Signature d(f/éhe Super\}isor

Place: %P(‘;\{(Dm,of = Raghuraman Rajagopalan
' Director - Technology
Date: 7¢ et ZoL8 HARMAN International (India) Pvt. Ltd.

Bangalore



Birla Institute of Technology & Science, Pilani

Work-Integrated Learning Programmes Division

First Semester 2015-2016

BITS ZG628T: Dissertation

ABSTRACT
BITS ID No. : 2013HT13433
NAME OF THE STUDENT : Vijayshinva B. Karnure
EMAIL ADDRESS : 2013ht13433@wilp.bits-pilani.ac.in
STUDENT'S EMPLOYING : HARMAN International (India) Pvt. Ltd.

ORGANIZATION & LOCATION Bangalore

SUPERVISOR’S NAME : Raghuraman Rajagopalan
SUPERVISOR'’S EMPLOYING : HARMAN International (India) Pvt. Ltd.
ORGANIZATION & LOCATION Bangalore

SUPERVISOR'’S EMAIL ADDRESS: Raghuraman.Rajagopalan@Harman.com

DISSERTATION TITLE : Applying Machine Learning Techniques in Software
Engineering



ABSTRACT

Most large scale software development projects follow an incremental build
model where developers iteratively design, test and implement features. In an Agile
environment requirements are broken down into features and a measure of
complexity like story points is assigned to them. Developers are then assigned
these development tasks based on their complexity. A software project hence can
be considered as a group of software features with varied complexity, implemented
by various developers.

Project Managers do not have a good way to compare these features in
terms of complexity. It is usually based on the project manager’s intuition. A
tangible way, to gauge the effort put in by a developer to implement a feature, is
the complexity of the code change set.

This is an attempt to use Machine Learning to categorize software feature
implementations based on code change sets. The goal here is to cluster feature
implementations, by extracting metrics from the code change sets of each
implemented feature using a clustering algorithm. This clustering gives the Project
Manager a tool to compare in-progress features with historical ones. The Project
Manager can adjust timelines, risk categorization, testing strategies based on this.

Complexity comparision is crucial in software engineering, for tasks like
determining developer productivity and better project planning.

Broad Academic Area of Work: Machine Learning and Software Engineering

Key words: Clustering, K-Means, Code Change Sets, Code Analysis

- "
W 7 ) ;
= [ 7 7

~<{1

; /
Signature of the Student Signature o‘%‘.ijhe Supervisor
Name: Vijayshinva B. Karnure Name: Raghuraman Rajagopalan
Date: 2( /\Dl’lD\S Date: /.6 OCT 205~ -

Place: ©AN GRLOME Place: !?) AN Ko a0



ACKNOWLEDGEMENTS

This project would not have been possible without the support of many people. I
would like to acknowledge and extend my heartfelt gratitude to the following
persons who have made the completion of this project possible.

My supervisor, Raghuraman Rajagopalan, for his full support and guidance
throughout this project.

My additional examiner, Vijaya Kumar Reddy Gajjala for encouraging and
supporting me to pursue the project.

Prof. S.R.K. Prasad Talasila from BITS Goa, for giving his feedback at various
stages of the project which acted as a motivation for working on the project.

My colleague, Sagar Mattoo for proof-reading the dissertation thesis.

Last but not the least, I would like to express my love and gratitude to my beloved
family, for their understanding & motivation, through the duration of this project.



Table of Contents

L ] 2 I N I i
LAY S 1 2 O iii
ACKNOWLEDGEMENTS ...iiiiiiiitiiie et s e st s e r s s s e s e rasnse s e sasnasesaess iv
(@] aT=T 0] o= ol R K o} o /Yo ¥ [t f [0 o PP 1
1.1 Current state of software development........c.cciiiiiiiiiiii i 1
Chapter 2: Git Version Control System .....ccviiiiiiiiiii i e 3
2.1 The Distributed Version Control System......ccooviiiiiiiiiiiii e 3
2.2 GIEINEEINAIS «.eie s 3
2.3 Developer WorKfIOW ..o 4
2.6 Metrics extracted from a Git REpOSItOry ...couviiiiiii e 5
Chapter 3: Code ANAlY SIS t.uuiiiiiiii ittt e et e aa e e e aaeeaneaaneans 6
G 0 A o To [ 1 1= o o T = 6
3.2 Microsoft .NET Compiler Platform aka Project ROSIyn ........cccvvvvviiiiiiinnnnnn. 6
Chapter 4: Clustering the pull requestS......oiiiii i e 9
4.1 Machine Learning using Python.......ccoo i s 9
4.2 K-Means ClUSEEIING . .uuiie ittt e e neeneaneenens 9
Chapter 5: Putting it all together ... 11
5.1 WOTKIIOW e e 11
5.2 A CaSE SHUAY ciiiiii it e 12
1181511 2 1= 1 VPR 14
Directions for future WOk .......coouieiii e 14
] =T =] o =P 15



Figure 1:

List of Figures

Software is an amalgamation of code change sets..........ccooeviiiiiiieinnnns 2

Figure 2: A pictorial representation of Git branching generated using the Git

Extensions Tool for the GitHub project dotnet/roslyn ......c.cccviiiiiiiiiiiiiiiccie e 4
Figure 3: Metrics extracted from code files. ......ccooviiiiiiiiii 6
Figure 4: Machine Learning - ClUStering......cviiiiiiiiii e ae s 9
Figure 5: Features Extracted from Pull Requests .........ccooeviiiiiiiiiii e 10
e T8 Lo = o o 1 (o ) 11
Figure 7: Machine Learning WOrKflOW ........ooeiiiiiiii e e 12
Figure 8: Dataset generated for dotnet/roslyn ......c.cooiiiiii i 12
Figure 9: Resultant clusters of pull requests for dotnet/roslyn...........ccccoeeviieintns 13
Figure 10: Visualization of the resultant clusters. ... 13

Vi



List of Abbreviations Used

API Application Programming Interface
DVCS Distributed Version Control System
PR Pull Request

REST Representational State Transfer
SaaS Software as a service

Sklearn SciKit-Learn Python Package

VCS Version Control System

Vii



Chapter 1: Introduction

1.1 Current state of software development

Software development has come a long way since the seventies. Over the
years several methodologies where developed and used. Now a days enterprises
developing software have mostly settled into using an iterative incremental
development model. Teams develop themes based on their project requirements.
Themes are then broken down into self-contained units of work which are agreed
upon by the developers and stakeholders. Developers own these units and work on
them independently. Periodic integrations of these units happen as and when
developers complete their implementation.

Open source projects rely on a community of developers who voluntarily
contribute code to the project. Many successful community-led open source
projects have been implemented over the years and the numbers continue to grow.
In an open source project, developers contribute by submitting code changes that
may implement new features or improve existing ones following a process agreed
upon by the owners of the project.

When it comes to managing these software development projects, software
development tools play an instrumental part. Any large scale software development
project, either enterprise or open source at the bare minimum will need an Issue
Tracking System and a Version Control System. The complexity rating or weightage
given for each feature or module implementation is usually based on the project
manager and developers intuition. Experience and familiarity of the project
environment are major influences in deciding these scores.

The Issue Tracking System helps the team track and plan, tasks and issues.
This is vital for proper collaboration between the team members and also multiple
teams. Developers and stake holders can discuss, plan and prioritize their tasks.
The Version Control System acts as the repository, for the code changes the team
of developers is doing. The Version Control System tracks in detail, the changes to
the code along with other metadata like the author of the change. The Version
Control System and the Issue Tracking System are often integrated. This
integration allows teams to map business requirements to feature implementations
and ultimately the code change sets. The team can get a clear picture of every code
change that was ever made, the reason it was made and references to the features
added.

The Version Control System is a central piece in the entire puzzle of software
development, as it is a record of the entire history of the project. Each feature or
module implemented in a project has a corresponding code change set in the
Version Control System. Current Version Control Systems do a good job of
recording even minute details like the exact lines of code that were changed as part
of a feature implementation.



The entire software project can be described as an amalgamation of these
individual code change sets. The code change set is the tangible effort that was put
in by the developer to implement a particular feature, module or fix. Various
metrics can be extracted out of these code change sets. An analysis of these
metrics can provide useful insights into the various features that were implemented
for the project.

Feature A Bugfix A Feature D

Code Change Code Change Code Change
Set A Set A SetD

Feature B Feature C

Code Change Code Change
Set B Set C

Figure 1: Software is an amalgamation of code change sets

As code change sets are the ultimate truth of a feature implementation in a
software project, in this dissertation the metrics extracted from these code change
sets are going to be used to relatively compare software features that were
implemented. This relative comparison can help project manager to gauge their
estimation in hindsight.



Chapter 2: Git Version Control System

2.1 The Distributed Version Control System

The Git Version Control System (Chacon & Straub, 2014) introduced in the
year 2005, has grown leaps and bounds and is now a dominant player in the
Version Control market. Most Version Control Systems prior to Git, were
centralized. A central server maintained the source, along with its change history.
Developers could check out files to make changes and implement new features.

Git changed the game by introducing a concept of Distributed Version Control
System. Each client of the DVCs would basically mirror the entire repository from
the central server. This way, the developers work independently on their own copy
of the source code. When they are ready to contribute their changes, developers
can merge their code changes with their peer repositories. In a DVCS all the clients
basically act as backups for the repository, as each one has an exact clone of it.

Being a DVCS, Git does not require a central server. But a central Git server
helps in collaboration. It acts as a starting point, from where new developers can
clone their repositories. It also acts as a central repository to which developers can
push their code changes and merge as required. The central server that maintains
the repositories for all projects is called a Remote Git Repository.

SaaS providers like GitHub and BitBucket, provide Git as a service for
clients to consume. Remote repositories can be hosted on GitHub or BitBucket at a
nominal cost and the service providers take care of managing and administering the
servers. GitHub boasts hosting over 28 million projects (About GitHub, 2015) as on
date. These service providers also expose REST APIs which can be queried to get
details about a Remote Git Repository.

2.2 Git Internals

A Git Repository is basically a folder structure which Git tracks. As and when
developers make changes to this folder like adding new files, modifying existing
files or deleting files, Git keeps track of all the changes. Periodically developers
commit their changes. A commit creates a differential snapshot of the folder
structure. A commit can act as a rollback point in case the developers want to
revert their changes. Since these commits are differential snapshots Git also
records the parent commit as part of the commit history.

By default every Git Repository has a default branch called the master
branch. This branch is usually the ready to deploy branch, which gets deployed to
production. Developers can create other branches from this main branch to work
independently on their changes. With newer commits, branches move forward
independently of each other. Branches can also be merged, where changes from
one branch are pulled into another.



)

When developers are ready to contribute their changes to the main branch,
an approval process is usually in place. The approval can be a peer review of the
code or a simple sign off from the owner. This is achieved using a pull request in
Git. A pull request encapsulates all the changes that were made to implement a
particular feature. It can also be looked at as a series of code commits that the
developer made as he/she implemented the feature.

p master I[> LIt PO Merge pull request #5867 from jar... Jared Parsons 8 days ago -

origin/features/patterns | Implement pattern variables declared in a...
Fix checks in the ForegroundMotificationServiceTests

Fix flaky suite

Test for the diagnostic matching an expression to a nullable type in ..

Finish integration with the future branch,

Merge pull request #3860 from jaredpar/xunit-ex

Fix x64 Jobs

Merge pull request #3523 from agocke/IncreaseCompilerServerTestR...,
Merge pull request #3839 from dotnet/CleanUpReadme

Use Roslyn instead of .MET Compiler Platform

Fix azure link

Merge pull request #3848 from jmarolf/ToolsetUpdate

Merge pull request #3817 from jaredpar/xunit

Merge pull request #3857 from tmat/|DiaSymWriter100

Muore test infrastructure fixes

Clean up async usage

Merge pull request #3842 from nguerrera/break-prerelease-metadat...

More test improvements

Fixd file casing

Merge pull request #3847 from genlu/AddinteractiveCommands

L] ‘ Test updates

Meal Gafter
Jared Parsocns
Jared Parsocns
Meal Gafter

Meal Gafter
Jared Parsocns
Jared Parsocns
Andy Gocke
Andy Gocke
Andy Gocke
Andy Gocke
Jonathon Marclf
Jared Parsocns
Tomas Matousek
Jared Parsocns
Jared Parsocns
Tomas Matousek
Jared Parsocns
Jared Parsocns
Gen Lu

Jared Parscns

8 days ago
8 days ago
8 days ago
8 days ago
8 days ago
8 days ago
8 days ago
8 days ago
8 days ago
8 days ago
8 days ago
8 days ago
8 days ago
8 days ago
9 days ago
9 days ago
9 days ago
9 days ago
9 days ago
9 days ago

9 days ago

Figure 2: A pictorial representation of Git branching generated using the Git Extensions Tool for the
GitHub project dotnet/roslyn

2.3

deploy. A typical developer workflow using Git is as follows.

1.
2.

uihw

Developer Workflow

The industry is eagerly adopting Continuous Integration and Continuous
Deployment. The project team is required to always have their code base ready to

A central project repository is created on a Git server.

This repository has a default source code branch called the master branch,
which has the latest and greatest ready to deploy code for the project.
Developers clone this repository to start working on their changes

To implement a feature, developers create a branch out of the main branch.
Developers make changes to their local copy of the source code and commit

changes on their respective branches.




6. Once the developers are convinced that the changes are good enough to be
merged with the master branch, they create a pull request.

7. The pull request encapsulates changes to all the files that were made by a
developer to implement a particular feature.

8. The pull request is then reviewed by the project owner, who either approves
or rejects the changes.

9. Once the pull request is approved, the branch is merged into the master
branch and is ready for deployment.

As and when developers contribute source code, the master branch keeps
moving forward. Developers working on their respective branches periodically pull
the master branch and merge it, so that they keep getting the latest updates.
Project teams develop their own branching strategy based on their experiences.
For example, some teams maintain a futures branch, where all new features are
merged instead of the master branch. This keeps the master branch always ready
to deploy and any new feature implementations do not interfere with the existing
source code.

One way of looking at the entire project is as a series of pull requests
merged together. Each pull request either added a new feature or fixed an existing
issue. The code change that went in with each pull request is the tangible effort put
in by the developer to implement the feature.

2.6 Metrics extracted from a Git Repository

Git exposes its internals using a standard API. The libgit2 library is a native
C library implementation that exposes all the functionality of Git. A .NET wrapper
around this library is called the libgit2sharp. Similarly Git hosting services like
Bitbucket and GitHub expose REST APIs, which can be queried to get details of
Remote Git Repositories.

In this project GitHub REST APIs are used to get a list of all pull requests for
a particular Git repository. Each pull request usually corresponds to a branch, a
developer created to implement a feature and has a bunch of commits associated
with it. Git APIs are then used to extract the code changes as part of these
commits.

The following metrics are extracted for each pull request,

1. Count of files changed
2. Count of code lines added
3. Count of code lines removed

Apart from the above mentioned metrics, each line of code that was actually
changed is also extracted for further analysis.



Chapter 3: Code Analysis

3.1 Code Metrics

Code metrics, were developed to answer the existential question of, "How
complex is the code?” There are many well defined software metrics in use, in the
industry today. Cyclomatic complexity, Maintainability index, Lines of code, Code
coverage are a few to mention. Each metric, in its own way tries to standardize and
quantize a measure that can define the characteristics of the software code.

In this study, the following metrics are extracted from code files,

Number of Expression Statements
Number of Branching Statements

Number of Looping Constructs

Number of Exception Handling Statements

N

Expression
Statements

Branching Looping

Statements Constructs

Excecption
Handling
Statements

Figure 3: Metrics extracted from code files.

These metrics give us an idea of the composition of the code change set, in
terms of the kinds of programming statements used. For example, if a particular
pull request has more number of “If” statements we can conclude that the feature
implemented, required more decision making.

3.2 Microsoft .NET Compiler Platform aka Project Roslyn

The Microsoft .NET framework is a popular development platform in the
industry today. Its capabilities and the maturity of the tooling around it, has made
it a popular choice for software implementation. An interesting project by Microsoft,
codenamed Roslyn was to create an open source version of the .NET language



compilers. As part of the compiler project, code analysis was also built in. The .NET
compiler platform exposes this code analysis functionality as a standard API.

Given a line of C# or VB.NET code, the Roslyn code analysis framework can
categorize the statement based on its kind, like local declaration statement, if
statement, expression statement etc.

Passing the lines of code extracted for each pull request, the Roslyn code
analysis framework can churn out the count of each kind of language statement
that was used to implement the feature.

The following metrics are extracted using the Roslyn code analysis
framework,

1. Number Of Expression Statements
Expression Statement
Labeled Statement
Using Statement
Lock Statement
Local Declaration Statement
Empty Statement
Unsafe Statement
Fixed Statement
Unchecked Statement
Checked Statement
. Block Statement
2. Number of Branching Statements
If Statement
Continue Statement
Return Statement
Switch Statement
Goto Statement
GotoDefault Statement
g. GotoCase Statement
3. Number of Looping Constructs
For Statement
Do Statement
ForEach Statement
While Statement
YieldReturn Statement
YieldBreak Statement
g. Break Statement
4. Number of Exception Handling Statements
a. Try Statement
b. Throw Statement

AU SO h0o a0 oo

"D Q0 oo

"0 QA0 oTo



These metrics are only calculated, if the file changed is written in C# or
VB.NET. Other files like configuration files, project files are basically ignored.

These metrics roughly describe the composition of a code change set and can
be used as a representation of a particular software feature implemented. A counter
argument can be made, that different developers have different styles of coding
and the same functionality can be written in different lines of code. That is true to
some extent, but in most projects as developers are subjected to repeated code
reviews, a consistency evolves. Automated code refactoring tools are also available
and widely used by enterprises.



Chapter 4: Clustering the pull requests

4.1 Machine Learning using Python

Machine Learning concepts can be implemented using a wide variety of tools.
SciKit-Learn (Pedregosa, et al., 2011) is a robust open source python library that
can be used to implement machine learning concepts. SciKit-Learn provides most of
the machine learning algorithms for classification, clustering and regression out of
the box. Python distributions like Anaconda (Anaconda - Modern open source
analytics platform, 2015) package together, all necessary python packages for data
analysis making it easy for the community to install and use them.

4.2 K-Means Clustering

K-Means is a well-known unsupervised clustering algorithm which works with
points in a vector space. K-Means groups together items in a dataset into K clusters
usually based on their Euclidean distance measure. The items in a cluster will have
lower Euclidean distance scores compared to ones outside the cluster.

K-Means works by

1. Choosing k centroids. The centroids can be random or use an initializing
algorithm like kmeans++ (Arthur & Vassilvitskii, 2007) which initializes the
centroid as distant from each other as possible

2. For each item in the data set calculate its distance from all centroids and
assign it to the cluster of the nearest centroid.

3. Improve the centroids by computing the mean value of all the distances
calculated in the previous step and choose them as the centroids.

4. Repeat step 2 and 3 until the centroids stop making any significant change in
the clusters.

CO
Feature ;
~ @ -

Figure 4: Machine Learning - Clustering

A good clustering run, should result in high inter cluster distances and low
intra cluster distances. SciKit-Learn implements the KMeans algorithm for clustering
data in the sklearn.cluster module. The KMeans algorithm is exposed as a class that
implements a fit method, which learns the clusters from the input dataset. The
labels__ attribute holds the cluster labels that the algorithm generates.



The input dataset to the K-Means clustering algorithm, are the features
derived from the merged pull requests. The dataset has seven dimensions namely

1. Count of files changed

Count of code lines added

Count of code lines removed

Number of Expression Statements
Number of Branching Statements

Number of Looping Constructs

Number of Exception Handling Statements

NoOURAWN

These seven dimensions roughly describe the composition of a change code
set and can be used as a description of a particular software feature
implementation.

Files
Changed

Exception
Handling
Statements

Lines
Removed

Pull

Request
Looping Expression
Constructs Statements

Branching

. Lines Added

Figure 5: Features Extracted from Pull Requests

An issue with the KMeans algorithm is that it requires the number of clusters
as an input. What is a good value for the number of clusters really depends on the
input dataset. Silhouette analysis (Rousseeuw, 1987) can be used to determine the
natural number of clusters for a dataset. The higher the separation between
clusters, the higher is the value. A value of +1 indicates that the clusters are
strongly separated. A value of -1 indicates that the clusters are vague. A value of 0
indicates a borderline case.

Silhouette analysis is susceptible to outliers in the dataset. If the dataset
contains an outlier, a value of two for the number of clusters will show a high
silhouette coefficient value. An acceptable target value for the silhouette coefficient
value is 0.5, which gives good clusters in general, but further study is required.

10



Chapter 5: Putting it all together

5.1 Workflow
The following chart summarizes all the steps described in the earlier
chapters.

¢ Extract pull requests that where merged to the master branch.
e Extract commits for each pull request.

o Calculate the difference between the first and last commit on each
branch.

¢ Using the difference, extract count of files changed, lines added,
lines removed and each line of code changed.

e For each line of code changed determine the kind of statement.
¢ Group these statements together to determine the number of
W= GElNEE  expression, control, looping and exception handling statements.
Framework
J
¢ Use the metrics extracted from all the branches for a particular
repository and cluster them using the KMeans algorithm.
S qalsi0 |  Run multiple iterations of the clustering algorithm to arrive at an
KMeans optimal cluster count.
clustering )

Figure 6: Workflow

This will result in clusters, where ‘similar’ pull requests end up together. For
this, a tool called GitExtract was written in C# that performed the first three steps.
Given a GitHub repository, GitExtract analyzes all the merged pull requests and
extracts the seven defined metrics for each. The dataset generated is then fed to a
Python script called clusterify.py which uses SciKit-Learn to generate clusters using
the K-Means algorithm. The script runs the K-Means algorithm iteratively with
varying K (number of clusters) and calculates the Silhouette scores. The humber of
clusters that achieves an approximate Silhouette score of 0.5 is used. The script
then labels the input data set based on the clusters generated.

11




Dataset

¢ Pull Requests
of a Git
Repository

* Merged with
master branch

—

Feature
Extraction

o # Files Changed

o # Lines Added

o# Lines
Removed

o # Expression
Statements

e #Branching
Statements

o # Looping
Constructs

o # Exception

Handling

Statements

—

Figure 7: Machine Learning Workflow

5.

compilers project and is continuously maintained and developed by the .NET team

2 A Case Study

e KMeans
clustering
e Kmeans++
e Silhouette

analysis

The above approach was applied to an open source project repository hosted
at https://github.com/dotnet/roslyn. This is the source code repository for the .NET

at Microsoft.

BeoUd Mg =

[F=R - ]

10
1
12
13
14
15
16
17
18
19
20
21
22
23

As on date 2254 pull requests where merged in the code repository. The run
resulted in a [2254, 7] dataset, a sample of which is shown below.

Branch

6169 Set State.WaitingForlnput in P
6158 Test ‘EmitSequenceOfBinaryEs
6147 Do not perform commit when
6145 Temporarily disable linux vbct
6144 Make dump directory predicta
6143 Add tests for use of unassigne:
6130 Remove restore from targets f
6127 SynthesizedParameterSymbol
6120 Use the same .rsp file for VS RE
6118 Delete zip after use

6116 Update test resources propriet
6097 Rename MS.CA.Scripting.CSha
6092 Change several tests to WpfFa
6090 Remove left-over package.con
6089 Added supports clauses to pro,
6086 Change AppConfigBasicFail to
6085 Porting fix for #4524 to stabiliz
6084 Do not crash on lexically bad fl
6083 [AskMode] Change parsing of
6082 No longer call SetSynchronizat
6080 Split the recommendation tesi
6076 Allow goto in scripts [stabilizal

FileCount LinesAdded LinesDeleted Expr

ra
Wwe s R e BES e W e e e e e s

= =
] )
ngl-'w

47
3
49
1
22
51
1
114
11

3
662
67
5

0
24
4
214
2180
118
63
2097
467

a9

w
LR R R =

216

Bowowand

1
56
18

151

122

Figure 8: Dataset generated for dotnet/roslyn

105 clusters where created as it resulted in an approximate silhouette score
of 0.5. A sample of the results are in Figure 9. The cluster labels in themselves do
not mean anything, but from the results we can now infer that pull requests with

the label 75 are ‘similar’.

atements

9
2
43
[}
16
49
1}

=
HOOOWODOS

w ]
= wow =
wogwwm

12

Ok NOOC OO o000 D0 00RO OO R

=)
%]

N OO0 OO0 000000000000 KFE o000

atements LoopStatements ExceptionHandlingStatements

O R 00 OO0 OO0 00 o0 oOo0oNDoOooOoO

'
[=RE=Nal


https://github.com/dotnet/roslyn

1 |Pull Requests Cluster Label

2115|687 Rename HasAccessChecksSuppressed to IgnoresAccessibil 74
2116|685 Check the CancellationToken in the DeclarePublicAPl anal 74
2117|684 Restore some access suppression tests in the binder need 74
2118 683 Prevent CodeActions commits during Inline Renames 74
2115|682 Add common Boxes to Microsoft.Codeanalysis 75
2120680 Fix a bug in AnalyzerManager.GetCompilationAnalysisSco 75
2121|677 Fix a NullReferenceException in the DeclarePublicAPl ana 75
2122|676 EnC: Calculate reverse map for each updated method cont 75
2123|673 Fix for issues around analyzer exception diagnostics gettir 75
2124|666 Handle OperationCanceledException in AnalyzerManager 75
2125660 Handle TaskCancelledException in AnalyzerManager.GetA 75
2126656 update Roslyn.Services.Editor.VisualBasic.UnitTests.dll ur 75
2127|655 Support EnC for lambdas & closures in VB compiler

2128 654 Format hash directives inside other hash directives of corr

2125|653 Use ReportFatalError in TaskFactory helpers

2130|640 Add -u {unsign) option to FakeSign.exe

2131|639 Change SyntaxEditor.InsertAfter to call correct overload.
2132|638 Add documentation clarifying C# compiler behavior for stz
2133|627 add support for error list 1sStable - progress indicator
2134|609 Improve SyntaxDiffer diffing rules

2135|606 Fix CompileAndVerifyOnWin80Only test utility

3 ddEedaAd

Figure 9: Resultant clusters of pull requests for dotnet/roslyn

Visualizing the resultant clusters is difficult as the input dataset has seven
dimensions. To visualize the clusters in a 2D plot, the dataset is subjected to
Principal Component Analysis (scikit-learn-developers, A demo of K-Means
clustering on the handwritten digits data, 2015).

Figure 10: Visualization of the resultant clusters. Centroids of the clusters are marked.

13



Summary

This dissertation presents a study that uses Machine Learning techniques in
Software Engineering. This study groups pull requests with similar code change sets
together. The similarities are based on tangible metrics, generated from code
change sets, implemented by developers. This grouping can help project managers
gain useful insights into their projects.

In hindsight project managers can compare different pull requests. This can
give project managers an insight into the effort put in by different developers. The
model can be used for predictive analysis as well. Consider a software feature
currently under development on an independent branch. Metrics derived from that
branch can be used to figure out which cluster the branch currently lies in. This can
help a project manager, take decisions based on experience of the earlier pull
requests. The team can adjust timelines, risk categorization, testing strategies
etc., based on other pull request experience.

Directions for future work
The work done in this dissertation can be further improved and expanded.
Some of the ideas are listed below.

1. Outliers in the input dataset can skew the clustering. A mechanism to deal
with outliers has to be implemented. Improvements in determining the
number of clusters also needs to be worked on.

2. Infer additional data of pull requests from the linked Issue Management
System like bug metrics, schedule adherence

14



References

About GitHub. (2015, October). Retrieved from GitHub: https://github.com/about

Anaconda - Modern open source analytics platform. (2015). Retrieved from
Continuum Analytics: https://www.continuum.io/why-anaconda

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful
seeding. Eighteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics.

Chacon, S., & Straub, B. (2014). Pro Git. Apress.

dotnet/roslyn. (2015). Retrieved from .NET Compiler Platform ("Roslyn"):
https://github.com/dotnet/roslyn

GitHub API v3. (2015). Retrieved from GitHub Developer:
https://developer.github.com/v3/

Hummel, J., & Neward, T. (2014, November). The Working Programmer : Rise of
Roslyn. MSDN Magazine.

libgit2/libgit2sharp. (2015). Retrieved from LibGit2Sharp:
https://github.com/libgit2/libgit2sharp

Neward, T., & Hummel, J. (2015, February). The Working Programmer - Rise of
Roslyn, Part 2: Writing Diagnostics. MSDN Magazine.

Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, . . . Duchesnay. (2011).
Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 2826-2830.

Rousseeuw, P. (1987). Silhouettes: a Graphical Aid to the Interpretation and
Validation of Cluster Analysis. Journal of Computational and Applied
Mathematics, 53-65.

scikit-learn-developers. (2015). A demo of K-Means clustering on the handwritten
digits data. Retrieved from scikit-learn 0.16.1 documentation: http://scikit-
learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html

scikit-learn-developers. (2015). A demo of K-Means clustering on the handwritten
digits data. Retrieved from scikit learn: http://scikit-
learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html

scikit-learn-developers. (2015). Selecting the number of clusters with silhouette
analysis on KMeans clustering. Retrieved from scikit-learn 0.16.1
documentation: http://scikit-
learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.ht
ml

15



scikit-learn-developers. (2015). sklearn.cluster.KMeans. Retrieved from scikit-learn
0.16.1 documentation: http://scikit-
learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Turner, A. (2014, Special connect() Issue). C# and Visual Basic - Use Roslyn to
Write a Live Code Analyzer for Your API. MSDN Magazine.

16



Checklist of items for the Final Dissertation Report

1. Is the final report neatly formatted with all the elements required for a technical | Yes / Ko
Report?

2. Is the Cover page in proper format as given in Annexure A? Yes / MNer
Is the Title page (Inner cover page) in proper format? Yes / Ne~

4, (a) Is the Certificate from the Supervisor in proper format? Yes / Mo~
(b) Has it been signed by the Supervisor? Yes [/ Ne-

5. Is the Abstract included in the report properly written within one page? ges ;ﬁg«

es

Have the technical keywords been specified properly?

6. Is the title of your report appropriate? The title should be adequately descriptive, precise | Yes / No—
and must reflect scope of the actual work done. Uncommon abbreviations / Acronyms
should not be used in the title

Have you included the List of abbreviations / Acronyms? Yes / Ple~

Does the Report contain a summary of the literature survey? Yes / Ne—-

Does the Table of Contents include page numbers?
(i).  Are the Pages numbered properly? (Ch. 1 should start on Page # 1) Yes / Mo
(if).  Are the Figures numbered properly? (Figure Numbers and Figure Titles should be at | Yes / N
the bottom of the figures)
(iii).  Are the Tables numbered properly? (Table Numbers and Table Titles should be at the | Yes / Me—
top of the tables)

(iv). Are the Captions for the Figures and Tables proper? Yes / No
(v). Arethe Appendices numbered properly? Are their titles appropriate Yes / No-
10. Is the conclusion of the Report based on discussion of the work? Yes / Ne-
11, Are References or Bibliography given at the end of the Report? Yes / o~
Have the References been cited properly inside the text of the Report? lg: ; I;Z
Are all the references cited in the body of the report
12. Is the report format and content according to the guidelines? The report should not be a mere | Yes / Ne—

printout of a Power Point Presentation, or a user manual. Source code of software need not
be included in the report.

Declaration by Student:

I certify that I have properly verified all the items in this checklist and ensure that the report is in
proper format as specified in the course handout.

(’fﬂwﬁ\\a\*“—

Place: %P‘NM\LDQE Signature of the Student
Date: 2’6 / LD [10\(_ Name: \(L} AV SHINVA {B . \(A\KNUK\:

ID No.: 2013 UT 13433




